

বিদ্যাসাগর বিশ্ববিদ্যালয়

## VIDYASAGAR UNIVERSITY

B.Sc. Honours Examination 2021
(CBCS)
4th Semester
PHYSICS
PAPER-C10T \& C1OP

## ANALOG SYSTEMS AND APPLICATIONS

Full Marks: 60
Time : 3 Hours
The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

## THEORY : C10T

Answer any two questions.
$2 \times 15$

1. (a) How is a transistor represented as a two port device?
(b) Define the hybrid parameters for a basic transistor circuit in any configuration.
(c) Find the values of $h$ parameters of the given circuit

(d) What are the advantages of the h -parameters?
2. (a) In a differential amplifier using OPAMPs with two inputs the output is 2.01 mV when the inputs are $110 \mu \mathrm{~V}$ and $90 \mu \mathrm{~V}$ but the output is 2 mV when the inputs are $10 \mu \mathrm{~V}$ and $-10 \mu \mathrm{~V}$. Find the CMRR of the amplifier.
(b) Define slew rate. In an OPAMP the maximum current charging the corresponding capacitance of 30 pF is $200 \mu \mathrm{~A}$. What will be the slew rate of the OPAMP?
(c) Find the output voltage of the figure given below.

(d) Determine the output voltage of the figure given below.


$$
3+4+4+4
$$

3. (a) Derive expression for mid and high frequency voltage gain of a $\mathrm{R}-\mathrm{C}$ coupled amplifier.
(b) The mid-band gain of a RC coupled amplifier is 120. At frequencies of 100 Hz and 100 KHz , the gain falls to 60 . Determine the bandwidth.
(c) Draw a circuit diagram of a 4 stage $\mathrm{R}-2 \mathrm{R}$ ladder $\mathrm{D} / \mathrm{A}$ converter. Calculate the output voltage when input binary number is 1110 where reference voltage is 16 V and $\mathrm{R}=10 \mathrm{KOhm}$ and feedback resistance, $R_{f}=3 R$.
$3+3+4+5$
4. (a) Explain with the help of a block diagram the working principle of a feedback amplifier. Find out an expression for the voltage gain with negative feedback.
(b) An amplifier has a voltage gain of -100 . The feedback ratio is -0.04 . Find
(i) The voltage gain with feedback
(ii) The amount of feedback in dB .
(iii) The output voltage of the feedback amplifier for an input voltage of 40 mV .
(c) What are the Barkhausen criteria? What are the primary requirements to obtain steady oscillations at fixed frequency?
(d) In a phase-shift oscillator that uses three RC sections, $\mathrm{R}_{\mathrm{L}}=\mathrm{R}=10 \mathrm{k} \Omega$. If the oscillator is to generate frequencies in the range from 1 to 100 kHz , what should be the range of capacitor, C .

$$
(4+2)+3+(2+1)+3
$$

Answer any one question.
5. (a) An LED operates at 1.5 V and 5 mA in forward bias. Assuming an $80 \%$ external efficiency of the LED, how many photons are emitted per second?
(b) A diode D as shown in figure has an i-v characteristic relation given by

$$
\begin{aligned}
i_{d} & =v_{d}^{2}+2 v_{d} & & \text { for } v_{d}>0 \\
& =0 & & \text { for } v_{d}<0
\end{aligned}
$$

Find the voltage across the diode, $v_{d}$ in this circuit.

## 1 Ohm


6. (a) Why is the field-effect transistor called a unipolar transistor ? What is the significance of the term field-effect?
(b) Determine the output voltage of the given circuit.


$$
6+4
$$

PRACTICAL : C10P

Answer any one question.

1. Draw the circuit diagram for VI characteristic of Zener diode. Calculate the limiting resistance, $R_{S}$ for Zener voltage $=5.6 \mathrm{~V}$, maximum wattage of Zener, $\mathrm{P}_{\mathrm{ZM}}=0.25 \mathrm{~W}$ and maximum input voltage, $\left(\mathrm{V}_{\mathrm{i}}\right)_{\max }=10 \mathrm{~V}$. Draw VI characteristic curve of Zener diode and specify the Zener breakdown voltage. How can you determine $d c$ and ac resistance from characteristic curve ?

$$
3+7+4+2+4
$$

2. Write down the theory and circuit diagram to investigate the use of an OP AMP as an integrator. Calculate the specific value of limiting resistance, $R_{2}$ capacitor and other resistor $\left(R_{1}\right)$ connected to inverting
input. Capacitance should be such that there would be limiting frequency, $\mathrm{f}_{0} \sim 160 \mathrm{~Hz}$. Draw the nature of the plot $\frac{V_{i}}{V_{0}}$ vs f . How can you determine unknown capacitor from this curve provided $R_{1}=1 \mathrm{~K} \Omega$ ?

$$
6+7+3+4
$$

3. Draw a circuit diagram to study characteristics of an $n-p-n$ transistor in common emitter configuration. Write down the theory for this experiment. Draw the output characteristic curve. How can you determine the ac current gain $\left(\mathrm{h}_{\mathrm{fe}}\right)$ and output admittance $\left(\mathrm{h}_{\mathrm{oe}}\right)$ from the characteristic curve ?

## [Internal assessment - 10]

[Attendance - 5]

